
65

ISSN 1060-992X, Optical Memory and Neural Networks, 2018, Vol. 27, No. 2, pp. 65–80. © Allerton Press, Inc., 2018.

Review of State-of-the-Art
in Deep Learning Artificial Intelligence

V. V. Shakirova, b, K. P. Solovyevaa, b, and W. L. Dunin-Barkowskia, b, *
aScientific Research Institute of System Analysis, Moscow, Russia

bMoscow Institute of Physics and Technology, Russia
*e-mail: wldbar@gmail.com

Received December 5, 2017; in final form, March 1, 2018

Abstract—The current state-of-the-art in Deep Learning (DL) based artificial intelligence (AI) is
reviewed. A special emphasis is made to compare the level of a concrete AI system with human abilities
to show what remains to be done to achieve human level AI. Several estimates are proposed for com-
parison of the current “intellectual level” of AI systems with the human level. Among them is relation
of Shannon’s estimate for lower bound on human word perplexity to recent progress in natural lan-
guage AI modeling. Relations between the operation of DL constructions and principles of live neural
information processing are discussed. The problem of AI risks and benefits is also reviewed based on
arguments from both sides.
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1. INTRODUCTION
Recent progress in deep learning (DL) algorithms for artificial intelligence (AI) has improved the AI

field so much that it is worth to review the overall picture that we have now. One of the important ques-
tions, which arise in this field, is an estimation of the time when the human-level AI will be created [1].
Certainly it’s very hard to predict future of science. In this article the recent progress in DL is reviewed.
This progress has some regularities which enable its extrapolation into the future. Such extrapolation is in
favor of reasonably high probability of human level AI in next 5 to 10 years or sooner.

It has been argued that emergence of human-level AI isn’t automatically good for humanity. On one
hand, there are arguments that humans will get beneficial partnership with superhuman-clever AIs, or
that those AIs would really care about humans, like allowing us appropriate access to mineral resources
and agriculture fields of the planet [2]. On the other hand, these arguments might be futile due to their
vagueness and the supposed very long time distance from now [3]. However, times are changing. Super-
human-level AI might be quite near as well [1].

The field is hot and most of the works, cited in this review, are from arXiv, not from journals. The paper
most similar to the current article has been written in 2013 by Katja Grace [4]. Another review with more
details on deep history of deep learning has been written in 2014 by Jurgen Schmidhuber [5].

The structure of the article is as follows. After Introduction, in Sections 2 and 3, we review state-of-
the-arts in natural language processing and sensory image processing. In Sections 4 and 5 progress in DL
methods is discussed. Sections 6–8 address the issues in general AI, which seem to be important, based
on cognitive sciences and neurosciences. Also, in Section 8 we discuss the feedback influence of DL suc-
cess onto ideas and methods of neuroscience. Here it is also argued that for both fields—AI and Neuro-
sciences, the important role might be attributed to Pavlov Principle [6]. This is a generalization of original
I.P. Pavlov early intuitive guess about the importance for physiology and psychology of the conditioned
reflexes (discovered in his laboratories) [7] and the current success story of DL. In Sections 9, some new
and prospective approaches are reviewed. Many of them might revolutionize modern deep learning but we
don’t know yet which ones. In Section 10, the predictions of professionals about when human level AI
would be developed are discussed. In Section 11, a brief review of AI safety research is given. Conclusions
are presented in Section 12.
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2. NATURAL LANGUAGE PROCESSING
We begin with review of state-of-the-arts in natural language modeling. For estimation of (probabilis-

tic) modeling quality the perplexity measure or just perplexity is currently in use. Numerical value of per-
plexity is the mean value of 1/P(t, t + 1), where P(t, t + 1) is the probability that the model chooses the
correct word w(t + 1) in the moment t + 1, given all the words w(t'), which were present on or before the
moment t. Table 1 shows perplexity values for the best current AI programs.

Why perplexity matters?
If neural net chooses inconsistent next word (wrong in any sense: logical, syntactic, pragmatic) then it

means that the system has not been correctly tuned to the text, to which it reacts with generation of the
next word. When neural chat bots are trained to produce words with low perplexity in relation to the train-
ing corpus of texts, they become capable to write coherent stories, to answer intelligibly, with common
sense, to questions, related to the recently loaded information, to reason in a consistent and logical way,
etc. [8].

Shannon estimated lower and upper bounds of human perplexity to be 0.6 and 1.3 bits per character
[9]. Strictly speaking, applying formula (17) in his work gives lower bound equal 0.648 which he rounded.
Given average word length of 4.5 symbols and including spaces (as Shannon included them in his study)
gives us an estimate for lower bound on human-level word perplexity as 11.8 = 20.648 × 5.5. This lower bound
might be much less than real human perplexity [10].

What are reasonable predictions for perplexity improvements in the nearest future? Table 2 shows
results of works [11] and [12] and their dependence on the number of hidden neurons, hs. From the data,
it’s quite reasonable to extrapolate that algorithm [11] for hs = 4096 might give pplx < 20, and hs = 8192
might give pplx < 15 while ensemble of models with hs = 8192 trained on 10B words might give perplexity
well below 10. Nobody can tell now what kind of common sense reasoning would such a neural net have.

Another source of improvement may come from solving some discrepancy in what kind of perplexity
is optimized [13], [14]. Here also the ways are proposed to partially solve that problem using adversarial
learning. The work [15] demonstrates impressive advantages of adversarial paradigm. Wasserstein GAN is
another good direction of research [16].

Human BLEU score for Chinese to English translation on MT03 dataset is 35.76 [17]. In recent article
[18] neural network gets 40.06 BLEU on the same task and dataset. They took state-of-the-art [19]
“GroundHog” network and replaced maximum likelihood estimation with their own MRT criterion,
which increased BLEU from 33.2 to 40.06. Here is a quote from abstract: “Unlike conventional maximum
likelihood estimation, minimum risk training is capable of optimizing model parameters directly with

Table 1. Best perplexity scores

Dataset Perplexity Link

Wikipedia english corpus snapshot 2014/09/17 (1.5B words) 27.1  [66]
1B word benchmark (shuffled sentences) 24.2  [105]
OpenSubtitles (923M words) 17  [83]
IT Helpdesk Troubleshooting (30M words) 8  [83]
Movie Triplets (1M words) 27  [122]
PTB (1M words) 62.34  [160]

Table 2. Best perplexity scores, single model

Number of hidden neurons Perplexity in [6] Perplexity in [105]

256 38 –
512 – 54

1024 27 –
2048 – 44
4096 – –
8192 – 30

24.2 (ensemble)
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respect to evaluation metrics”. Another impressive improvement comes from improving translation with
monolingual data [20]. Modern neural nets translate text ~1000 times faster than humans do [21]. The
most surprising recent result in language translation is translation without using the parallel texts [22]. The
author’s approach yields BLEU score for the language pairs (French-English) and (German-English)
without using a single word of parallel texts. Indeed, the result might be due to the fact that, to a certain
degree, English is a kind of a hybrid between French and German. Nevertheless, the result is absolutely
amazing.

3. SENSORY SIGNALS PROCESSING

Table 3 clearly illustrates fast rate of progress in computer vision.

”Identity mappings in deep residual networks” [23] reach 5.3% top-5 error in single one-crop model
while human level is reported to be 5.1% [24]. In “deep residual networks” [25] one-crop single model
gives 6.7% but ensemble of those models with Inception gives 3.08% [26]. Another big improvement
comes from “deep networks with stochastic depth” [27]. There was reported ~0.3% error in human anno-
tations to ImageNet [24], so real error on ImageNet would soon become even below 2%. Human level is
overcome not only in ImageNet classification task (see also an efficient implementation of 21841 classes
ImageNet classification [28]) but also on boundary detection [29]. Video classification task on SPORTS-1M
dataset (487 classes, 1M videos) performance improved from 63.9% [30] (2014) to 73.1% [31] (March
2015). See also [32].

CNNs outperform humans also in terms of speed being ~1000x faster than human [33] (note that times
there are given for batches) or even ~10000× times faster after compression [34]. Video processing 24fps on
AlexNet demands just 82 Gflops and GoogleNet demands 265 Gflops. Here’s why. The best benchmark in
[33] gives 25ms feedforward and 71ms total time for 128 pictures batch on NVIDIA Titan X (6144 Gflops), so
for 24fps video real-time feedforward processing we need 6144 Gflops * 24/128 * 0.025 = 30 Gflops. If we want
to learn something using backprop than we need 6144 Gflops * 24/128 * 0.071 = 82 Gflops. Same calcu-
lations for GoogleNet give 83 Gflops and 265 Gflops respectively.

Neural nets can answer questions based on images [35]. Using similar method as in [36] the equivalent
human age of net [35] can be estimated as 6.2 years old (submitted 4 Mar 2016), while [37] was 5.45 years
(submitted 7 Nov 2015), [36] was 4.45 years (submitted 3 May 2015). See Appendix for details of age esti-
mates. Also, nets can describe images with sentences, in some metrics even better than humans can [38].
Beside video=>text [39–41], there are some experiments to implement drawing pictures, based on text
[42–44].

Speech recognition closely resembles and follows computer vision. Table 4 shows that here, AI hasn’t
surpassed human level yet but it’s clearly seen that we have all chances to see it in 2017. The rate of
improvement is very fast. For example, Google reports it is word error rate dropped from 23% in 2013 to
8% in 2015 [45].

Multimodal learning is used in [46–49] to improve video classification related tasks. Unsupervised
multimodal learning is used in grounding of textual phrases in images [50] using attention-based mecha-
nism so that different modalities supervise one another. In “neural self-talk” [51] a neural network sees a
picture, generates questions based on it and answers those questions itself.

1
1
2

Table 3. Performance improvement on several tasks

Year ImageNet top-5 error ImageNet localization PASCAL VOC
detection [161]

2011 25.77% 42.5%
2012 15.31% 33.5%
2013 11.20% 29.9% <50%
2014 6.66% 25.3% 63.8%
2015 3.57% 9.0% 76.4%
2016 2.99% 7.7% 88.4%
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4. REINFORCEMENT LEARNING
The very sound Al results with reinforcement learning have been obtained in playing an ancient and

highly respected for its intellectual values the game of Go [52]. The latter operates in its seemingly very
simple but in fact extremely complicated world, which is just a board of 19 × 19 lines with stones and a
bunch of simple rules. The final AI result with Go is absolutely impressive. Computer learns to play the
game by self-learning from the beginning, and defeats all human players and all the programs, which took
into account huge amounts of human experience.

Go and Atari playing agents choose one action from a finite set of possible actions. There are also arti-
cles on continuous reinforcement learning where action is a vector [53–61].

If we enable the successful Go playing programs with continuous reinforcement learning (and if we
manage to make it work well on hard real-world tasks) than it would be real AGI in a real world. Also, we
can begin with pre-training it on virtual videogames [62]. Videogames often contain even much more
interesting challenges than real life gives for an average human. Millions of available books and videos
contain the concentrated life experience of millions of people. While Go programs present successful
examples of pairing modern RL with modern CNN, RL can be combined with neural chat bots and rea-
soners [63, 64].

The success of reinforcement learning algorithms in technological applications enables one to suggest
a plausible solution to one of the old evolutional enigmas: what is the function of dreams? The hypothesis
is based on the fact that before humans started to talk there were no arguments to them to make distinction
between life events and events in dreams. That means that human behavior sometimes could be controlled
by the latter. On the other hand dreams are more or less realistic, but practically never follow logics of
everyday life. In reinforcement learning theory [65] one of the principle ideas is using of the “epsilon-
greedy” strategy. That means that you almost all the time take “greedy” actions (which seem to provide
maximal expected reward) and with a (small) probability epsilon make a “random” action. Decision

Table 4. Speech recognition performance errors

Year CHiME noisy VoxForge European WSJ eval’93 LibriSpeech test-other Citation

2014 67.94% 31.2% 6.94% 21.74%  [162]
2015 21.79% 17.55% 4.98% 13.25%  [163]
human 11.84% 12.76% 8.08% 12.69%  [163]

Fig. 1. How AlphaGo works [137].
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based on events in dream can play this random role. It seems that thus formulated dream function hypoth-
esis has not been proposed earlier [66].

5. UNSUPERVISED LEARNING

DCGAN [67] generates reasonable pictures [68]. Language generation models which minimize per-
plexity are unsupervised and were improved very much recently (Table 1). “Skip-thought vectors” [69]
generate vector representation for sentences allowing to train linear classifiers over those vectors and their
cosine distances to solve many supervised problems at state-of-the-art level. Generative nets gained deep
new horizons at the edge of 2013–2014 [70, 71]. Recent work continues progress in “computer vision as
inverse graphics” approach [72].

Another recent breakthrough is Wasserstein GAN [16] which improved stability of GAN training mak-
ing it much easier to train GAN with wider range of hyperparameters.

6. IS EMBODIMENT CRITICAL?

People with tetra-amelia syndrome [73] have neither hands nor legs from their birth and they still man-
age to get a good intelligence. For example, Hirotada Ototake [74] is a Japanese sports writer famous for
his bestseller memoirs. He also worked as a school teacher. Nick Vujicic [75] has written many books,
graduated from Griffith University with a Bachelor of Commerce degree, he often reads motivational lec-
tures. Prince Randian [76] spoke Hindi, English, French, and German. Modern robots have better
embodiment.

There are quick and good drones, there are quite impressive results in robotic grasping [77]. It’s argued
that embodiment might be done in virtual world of videogames [62]. Among 8 to 18-year-olds average
amount of time spent with TV/computer/video games etc., is 7.5 hours a day [78]. According to another
study [79] UK adults spend an average an 8 hours and 40 minutes a day on media devices. Humans
develop commonsense intelligence very fast. When you are 2 years old you barely can do something that
current AI can’t. When you’re 4 years old you have common sense, you can learn from texts and conver-
sations. However, 2 years are just 100 weeks. If we exclude sleep we get ~50 weeks. The 24 fps video input
of 50 weeks might be processed in 10 hours on pretrained AlexNet using four Titan X.

7. ARGUMENTS FROM NEUROSCIENCE

Roughly speaking [80], [81] 15% of human brain is devoted to low-level vision tasks (occipital lobe).
Another 15% are devoted to image and action recognition (somewhat more than a half of temporal lobe).
Next 15% are devoted to objects detection and tracking (parietal lobe). Then, next 15% are devoted to
speech recognition and pronunciation (Brodman Areas 41, 42, 22, 39, 44, parts of 6, 4, 21) and, also, 10%
are devoted to reinforcement learning (orbitofrontal cortex and part of medial prefrontal cortex). Taken
together, the listed cortex parts comprise about 70% of human brain.

Judging on these facts, we can say that modern neural networks work at about human level for these
70% of human brain.

For example, CNNs make 1.5× less mistakes than humans at ImageNet while acting about 1000×
times faster than a human.

One can claim that unexplained in function remain just 30% of human brain cortex.

According to modern micro-anatomical and neurophysiological studies, human cortex has the similar
structure throughout its entire surface [82]. It’s just 3mm thick mesh of neurons functioning on the same
principles throughout all the cortex. There is likely no big difference between how prefrontal cortex works
and how other parts of cortex work. There is likely no big difference in their speed of calculations, in com-
plexity of their algorithms. It would be somewhat strange if modern deep neural networks can’t solve
remaining 30% in several years.

The standard neuroanatomical view of human brain subdivision into 47 Brodman Areas (BA) is given
in Fig. 3. About 10% of the entire cerebral cortex area belong to low-level motorics (BAs 6,8). Robotic
hands are not very dexterous. However people having no fingers from their birth have problems with fine
motorics but still develop normal intelligence [73], see also the section “Is embodiment critical?”. Also,
one of functions of a part of brain cortex, called DLPFC, is attention which is actively used now in
LSTMs.

The only part which still lacks near human-level performance are BAs 9, 10, 46, 45 which together
occupy only 20% of human brain cortex. These areas are responsible for complex reasoning, complex tools
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usage, complex language. However, “A neural conversational model” [83], “Contextual LSTM…” [84],
“playing Atari with deep reinforcement learning” [85], “mastering the game of Go…” [52], and numerous
other already mentioned articles have recently begun to really attack this problem.

There seem to be no particular reasons to expect these 30% to be much harder than other 70%. Less
than 3 years has gone from AlexNet winning ImageNet competition to surpassing human level. It’s rea-
sonable to expect the same <3 years gap from “A neural conversational model” winning over Cleverbot to
human-level reasoning. After all, there are much more deep learning researchers now with much more
knowledge and experience, there are much more companies interested in DL.

Extensive survey of approaches and perspectives to compose Human Level AI from the point of view
of Computational Cognitive Sciences is given in [86]. Also, this publication is accompanied by critics and
discussion of many authors, as this is practiced by Behavioral and Brain Sciences.

8. PROGRESS IN BRAIN REVERSE ENGINEERING. PAVLOV PRINCIPLE

Detailed connectome deciphering has begun to really succeed recently with creation of multi-beam
scanning electron microscopy [87], which enable labs to get a grant for deciphering the detailed connec-

tome of 1 × 1 × 1 mm3 of rat cortex [88] after the proof-of-principle deciphering of 40 × 40 × 50 mcm of
brain cortex with 3 × 3 × 30 nm resolution was achieved [89].

Of particular importance for understanding connections between success of DL systems and real neu-
ral systems is the work of Lillicrap, T. P. et al. [90]. These authors have demonstrated that error back-
propagation (BP) is not necessary for the tuning of DL systems. This is crucial because the BP cannot be
implemented in live neural systems. Thus, there came understanding that “the secrets” of real brains cog-
nitive abilities might be due to the same mechanisms, which provide smartness of DL neural networks.
Therefore, for construction of “artificial brain” of any intellectual power no principal difficulties are
expected now. It should be emphasized at this point that currently arXiv delivers much more timely infor-
mation than even the best journals. The journal version of [90] appeared in very prestigious Nature Com-
munications two years later than the original publication [91].

It should be also noted that all computational experimental data along with elements of their mathe-
matical foundation (the true mathematical theory for efficiency of DL systems is yet to come) in fact
demonstrate that Ivan P. Pavlov had got a correct guess back in 1923 that myriads of elementary condi-
tioned reflexes can be responsible for the human intellectual abilities [7]. Pavlov’s initial foresight had
been detailed at the level of conditioned reflexes synaptic mechanisms by Donald Hebb [92]. Recently
(April, 2016), the general formulation had been proposed that unifies the classical ideas/prescience of
Pavlov and Hebb and the current progress in deep learning [6]. It is made in form of a “principle” or word
formula, naturally named Pavlov Principle (PP) to mark the Pavlov’s envision as following.

Pavlov Principle. A neural network, in which the strength of each inter-neuronal connection, gradually
changes as a function of locally distributed vector error signals and the activity states of connected neu-
rons, gradually evolves to error-free functioning [6].

This principle just generalizes on the current experimental knowledge and yields clues for understand-
ing live brains and for construction of artificial neural intelligence systems. It is important that in Decem-
ber, 2016, the new version of DL has been published. It was named “Direct Feedback Alignment” [93].
This method exactly corresponds to PP, as here the error signal goes straight from the site(s) of error detec-
tion to all synapses in the network, without propagation of error signals from layer to layer in BP (and as
still takes place in “Random Feedback alignment” [90]). Also important for the work of PP is another
important feature of large neural networks (containing 300+ neurons) is randomness of interneuronal
connections. This feature is also a must for initial conditions of interlayer matrices in all DL networks. The
needed randomness is not a self-sustained goal, but it is just the best way to implement in neural networks
non-trivial, complex functions, which are needed for information transformations [94, 95]. Mathematical
proof of PP is hardly possible in near future as it should be valid for any “reasonable” neuron or neuron
model, the latter notion falls out the mathematical scope. Nevertheless, attempts to imply physical and
mathematical reasoning to explain why DL works are continuing [96–99].

In [100] the standard BP is characterized as a construction with weight symmetry, as in BP the signals,
connected with error detection are propagated backward from output, using the same connections (with
the same weights) as direct signals, which implement processing of the input signals. All other means of
bringing the error information from output inside the neural network is characterized in [100] as non-
symmetric BP. However, in PP, as well as in [93], errors are not propagated from layer to layer but are
directly distributed among synapses in all layers of the network. It should be noted that BP provides a con-
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venient tool for tuning artificial neural networks and is widely used in ML (despite the fact that it is not
“Biologically plausible”).

Recently, STDP objective function has been proposed [101]. It’s like an unsupervised objective func-
tion somewhat similar to what is used for example in word2vec. In [98] surveyed a space of polynomial
local learning rules (learning rules in brain are supposed to be local) and found that backpropagation out-
performs them. There are also online learning approaches which require no backpropagation through
time, for example, [102]. Although they can’t compete with conventional deep learning in ML, brain per-
haps can use something like that given fantastic number of it’s neurons and synaptic connections. The
STDP is an experimentally characterized version of the idea of “Hebb synapse”. The latter, in turn, pres-
ents in fact single neuron implementation of conditioned reflexes. So, results of [98, 101, 102], along with
the BP itself, might be considered as established examples of PP realization.

9. PROSPECTIVE DIRECTIONS IN NEUROMORHIC AI TECHNOLOGIES

Recently, a f low of articles about memory networks and neural Turing machines made it possible to
use arbitrarily large memories while preserving reasonable number of model parameters. Hierarchical
attentive memory [103] (Feb2016) allowed memory access in O(logn) complexity instead of usual O(n)
operations, where n is the size of the memory. Reinforcement learning neural Turing machines [104]
(May2015) allowed memory access in O(1). It’s a significant step towards realizing systems like IBM Wat-
son on completely end-to-end differentiable neural networks and in order to improve Allen AI challenge
results from 60% to the numbers close to 100%. One also can use bottlenecks in recurrent layers to get
large memories using reasonable amount of parameters like in [12]).

Neural programmer [105] is a neural network augmented with a set of arithmetic and logic operations.
It might be first steps toward end-to-end differentiable Wolphram Alpha realized on a neural network.
The “learn how to learn” approach [106–108] has a great potential.

Recently, cheap stochastic variance reduced gradient (SVRG) method [109] was proposed. This line
of work aims to use theoretically very much better converging gradient descent methods.

There are works which when succeed would allow training with immensely large hidden layers, see in
“unitary evolution RNN” [110], “tensorizing neural networks” [111], “virtualizing DNNs…” [112].

“Net2net” [113] and “Network morphism” [114] allow automatically initialize new architecture NN
using weights of old architecture NN to obtain instantly the performance of latter. Collections of pre-
trained models are accessible online [115–117] etc. It is, in fact, an initial stage of module based approach
to neural networks. One just downloads pretrained modules for vision, speech recognition, speech gener-
ation, reasoning, robotics etc. and fine-tunes them on final task.

It’s very reasonable to include new words in a sentence vector in a deep way. However modern LSTMs
update cell vector when given new word in almost shallow way. This can be solved with the help of deep
transition RNNs proposed in [118] and further elaborated in [119]. Recent successes in applying batch
normalization to recurrent layers [120] and applying dropout to recurrent layers [121] might allow to train
deep-transition LSTMs even more effectively. It also would help hierarchical recurrent networks like [40,
41, 122–124]. Recently, several state-of-the-arts were beaten with an algorithm that allows recurrent neu-
ral networks to learn how many computational steps should be taken between receiving an input and emit-
ting an output [125]. Ideas from residual nets might also improve performance. For example, stochastic
depth neural networks [27] enable increase of the depth of residual networks beyond 1200 layers while get-
ting state-of-the-art results.

Memristors might accelerate neural networks training by several orders of magnitude and make it pos-
sible to use trillions of parameters [126, 127]. Quantum computing promises even more [128, 129].
Recently, the 51 (fifty one!) qubit quantum computer was demonstrated by Mikhail D. Lukin and his team
[130].

Deep learning is easy. Deep learning is cheap. Best articles usually use no more than several dozens of
GPU. For half billion dollars one can buy 64000 NVIDIA M6000 GPUs with 24 Gb RAM, ~7 teraflops
each, including processors etc. to make them work. For another half billion dollars one can prepare 2000
highly professional researchers from those one million [131] enrollments on Andrew Ng’s machine learn-
ing course on Coursera. So for a very feasible R&D budget for every big country or corporation, one gets
two thousand professional AI researchers equipped with 32 best GPUs each. It’s kind of investment very
reasonable to expect during next years of explosive AI technologies improvement.

The difference between year 2011 and year 2017 is enormous. The difference between 2017 and 2023
would be even much more impressive because we have now 1-2 orders of magnitude more researchers and
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companies deeply interested in DL. The topics of neural networks based AI and machine learning appli-
cations now often appear in mass-media and at all levels of business applications [132]. The current mar-
ket of the latter costs billions of dollars and involves numerous extremely diverse fields, from NLP
(machine synchronous translation), banking customers telling, driver-free cars, drug design [133], etc.

Finally, it should be mentioned that some neuromorphic technologies might be based not on DL, but
on special types of three layer perceptrons. In particular, currently, there are no doubts that the core struc-
ture in the cerebellum is a version of the three layer perceptron [134; and others]. The main distinctive
feature of the cerebellar machinery is a huge number of “second layer perceptron cells”, which act on one
output. These cells are granule cells of the cerebellum. In human cerebellum their number constitutes
about 70% of the total count of brain nerve cells. One functional module of the cerebellum includes one
climbing fiber cell (located in inferior olives), ten (average number) Purkinje cells and up to 2000000
granule cells. This “equipment” provides f lying abilities for those animals, who can fly (birds and bats).
Other motor control functions of cerebellum are less evident. Since 1990-ies definite cognitive functions
were ascribed to cerebellum. Although their existence was implicated in many studies, their explicit char-
acterization have been lacking. On the ground of pure analogy with the cerebellar role in f lying, cited
above, it has been suggested that the role of cerebellum in human cognition is to provide f light of thoughts
[134, p. 24]. In spite of the obvious vagueness of this hypothesis its trueness has been confirmed in fMRI
experiments. It has been found that in drawing test cerebellum is activated only in cases, when theme of
drawing demands creative efforts from participants [135].

10. PROFESSIONAL PREDICTIONS FOR HUMAN-LEVEL AI

Andrew Ng makes very skeptical predictions: “Maybe in hundreds of years, technology will advance to
a point where there could be a chance of evil killer robots” [136]. “May be hundreds of years from now,
may be thousands of years from now—I don’t know—may be there will be some AI that turn evil” [3].

Geoffrey Hinton makes a moderate prediction: “I refuse to say anything beyond five years because I
don’t think we can see much beyond five years” [137].

Shane Legg, DeepMind cofounder, used to make predictions about AGI at the end of each year, here
is the last one [138]: “I give it a log-normal distribution with a mean of 2028 and a mode of 2025, under
the assumption that nothing crazy happens like a nuclear war. I’d also like to add to this prediction that I
expect to see an impressive proto-AGI within the next 8 years”. Figure 2 shows the predicted log-normal
distribution.

This prediction has been made at the end of 2011. However, it’s widely held belief that progress in AI
was somewhat unpredictably great after 2011 so it’s very reasonable to expect that predictions didn’t
become to be more pessimistic. In recent 5 years there were perhaps even much more than one revolution
in AI field, so it seems quite reasonable that another 5 years can make another very big difference.

Fig. 2. Examples generated by GAN [164].
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For more predictions, see [139]. Here, we illustrated each viewpoint with the quotation of just one sci-
entist. For each of these viewpoints, there are many AI researchers supporting it [139]. A survey of expert
opinions on the future of AI in 2012/2013 [140] might also be interesting. However, most of involved peo-
ple there (even among “top 100” group) are not very much involved with ongoing deep learning progress.
Nevertheless the predictions they make are also not too pessimistic. For this article it’s quite enough that
we are seriously unsure about probabilities of human level AI in next ten years.

Also, it should be mentioned the early prediction, claimed by David Marr Memorial Brain Reverse
Engineering Laboratory (Project was active in 2011–2015, Project Manager Witali L. Dunin-Barkowski)
in 2011 was: “… It will be possible … to make (in yrs. 2018–2020) a full-scale working analog of the human
brain…” [141].

11. WOULD GENERAL (STRONG) AI BE BENEFICIAL OR DANGEROUS FOR HUMANS?

11.1. Optimistic Arguments

The promising approach to solve/alleviate AI safety problem is in use of deep learning to teach AI our
human values given some dataset of ethical problems. Given sufficiently big and broad dataset, we can get
sufficiently friendly AI, at least friendlier than most humans can be. However this approach doesn’t solve
all problems of AI safety [142]. Apart from that we can use inverse reinforcement learning but still would
need the benevolence/malevolence dataset of ethical problems to test AIs. This approach has been initially
formulated in “The maverick nanny with a dopamine drip” [143] but it’s arguably better formulated here
[142, 144, 145].

Fig. 3. Human brain, lateral view [165].
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We can challenge AI to rank several solutions (already written by dataset creators) for problems in
benevolence/malevolence dataset. It would be easy and fast to check. However, we also want to check the
ability of AI to propose its own solutions. This is much harder problem because it requires humans for
evaluation. So in intermediate steps we get something like the CEV [146] of Amazon Mechanical Turk.
The final version would be checked not by AMT but by a worldwide community including politicians, sci-
entists etc. The very process of checking may last months if not years especially if considering inevitable
hot discussions about controversial examples in the dataset. Meantime, people who don’t care too much
about AI safety would be able to launch their unsafe AGIs.

What would people include in the benevolence/malevolence dataset? Most probably people want some
scientific research from AI: a cure for cancer, cold thermonuclear synthesis, AI safety, etc. The dataset
would certainly include many examples teaching AI to consult with humans on any serious actions which
AI might want to follow and tell humans instantly any insights which arise in AI. Also, MIRI/FHI have
hundreds of good papers which might be used to create examples for such a dataset [147].

11.2. Pessimistic Arguments
Most of MIRI research on this topic [147, 148] comes to warning conclusions. The best easy introduc-

tion is [2] (or more popular [149] and [150]) though for serious understanding of MIRI arguments,
“Superintelligence” [147] and “AI-Foom debate” [2] is very much required. Here we provide our own
understanding and review of MIRI arguments which might differ from their official views but still is
strongly based on them.

First, we note that it is very profitable to give your AI maximal abilities and permissions.

Those corporations would win their markets which give their AIs direct unrestricted internet access to
advertise their products, to collect user’s feedback, to build positive impression about company and neg-
ative one about competitors, to research users’ behavior etc. Those companies would win which use their
AIs to invent quantum computing (AI is already used by quantum computer scientists to choose experi-
ments [151, 152]), which allow AI to improve it’s own algorithms (including quantum implementation),
and even to invent thermonuclear synthesis, asteroid mining etc. All arguments in this paragraph are also
true for countries and their defense departments.

Then, human-level AI might quickly become very superhuman-level AI. According to Andrew Karp-
athy: “I consider chimp-level AI to be equally scary, because going from chimp to humans took nature
only a blink of an eye on evolutionary time scales, and I suspect that might be the case in our own work as
well. Similarly, my feeling is that once we get to that level it will be easy to overshoot and get to superin-
telligence” [153].

It takes years or decades for us people to teach our knowledge to other people while AI can almost
instantly create full working copies of itself by simple copying. It has a unique memory. A student forgets
all the stuff very quickly after exams. AI just saves its configuration just before exams and loads it again
when it’s needed to solve similar tasks. Modern CNNs do not only recognize images better than human
but also make it several orders of magnitude faster. The same holds true for LSTMs in translation, natural
language generation etc. Given all aforementioned advantages, AI would quickly learn all literature and
video courses on psychology, would chat with thousands of people simultaneously and so would become
great psychologist. For same reasons, it would become great scientist, great poet, great businessman, great
politician, etc. It would be able to easily manipulate people and lead peoples.

Third fatal but profitable error: direct internet access. If someone gives internet access to human level
AI, it would be able to hack millions of computers and run it’s own copies or subagents on them like [154].
After that it might earn billion dollars in internet. It would be able to hire anonymously thousands of peo-
ple to make or buy dexterous robots, 3D-printers, biological labs and even a space rocket. AI would write
great clever software to control it’s robots.

Fourth, superhuman-level AI has ability to get ultimate power over the Earth. There is a simple yet
effective baseline solution. AI might create a combination of lethal viruses and bacteria or some other
weapon of mass destruction to be able to kill every human on Earth. You can’t guarantee efficient control
over something that is much smarter than you. After all, several people almost took over the world, so why
superhuman AI can not?

After that, it would destroy humanity, likely as a side-effect.

What would do AI to us if it has full power on Earth? If it’s indifferent to us then it will eliminate us as
a side effect. It’s just what does indifference mean when you are dealing with unbelievably powerful crea-
ture solving it’s own problems using power of the local Dyson sphere. However if it’s not indifferent to us
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then everything might be even worse. If it likes us it might decide to insert electrodes in our brains giving
us the utmost pleasure but no motivation of doing something. The very opposite would be true if it dislikes
us or if it was partially hardcoded to like us but that hardcoding contained a hard-to-catch mistake. Mis-
takes are almost inevitable when trying to partially hardcode something which is many orders of magni-
tude smarter and more powerful than you.

There is nothing but vague intuition behind thought that superhuman-level AI would take care of us.
There are no physical laws for it to have a special interest in people, in sharing oil/fields/etc. resources with
us. Even if AI would care about us, it’s very questionable if that care would be appropriate from our today
moral standards. We certainly shouldn’t take that for granted and to risk everything we have. The fate of
humanity would depend on decisions of strong AI once and forever.

A lot of other pessimistic scenarios has been proposed and discussed at length [155–159]. The problem
has been discussed for years with no reasonable approach really proposed up to the present moment.

12. CONCLUSIONS

There are many good arguments arguing that human level AI would be constructed during next 5 to 10 years.
We are aware of contrary opinions but none of them is explicitly based on thorough analysis of current
trends in deep learning and brain reverse engineering. They are in fact based on experience of prominent
AI scientists, world acknowledged authoritative scholars, who claim such opinions. However there are
other true professionals, AI scientists, who claim that human level AI is quite probable much sooner—in
next 5 to 10 years, or less. So it’s a good idea to work in the field being ready to any scenario in the field,
to their advantages and as well as to their disadvantages.

APPENDIX. ESTIMATION OF NEURAL NETWORK EQUIVALENT AGE

In [36], the age of their model was estimated as 4.45 years. It answered 54.06% questions correctly.
They investigate for many questions the youngest age group that could answer it. The results are: age 3–4,
15.3%; age 5–8, 39.7%; age 9–12, 28.4%; age 13–17, 11.2%; age 18+, 5.5%. The sum equals 100% how-
ever 18+ humans answer 83.3% correctly. We could estimate that 8 year model must answer understand-
able for age 8 15.3 + 39.7% = 55% questions with 83.3% accuracy and other 45% with accuracy equal to
baseline model. If they select the most popular answer for each question type, they get 36.18%. It’s rea-
sonable to estimate the age of that baseline model as 0 years because it’s not real knowledge but it depends
on this distinct dataset statistics. However, there are two baseline models in article, with 36.18 and 40.61%
accuracy, both are quite simple. Which one to choose? Let’s calculate. Let’s define accuracy of 8 year old
model as y, accuracy of 4 year old model as x, baseline accuracy as t. We have following equations: 4 +
4(54.06 – x)/(y – x) = 4.45 55 × 0.833 + 45t = y 15.3 × 0.833 + 84.7t = x with solution: t = 46.86%, x =
52.4%, y = 66.9%. So we estimate age of model with 57.6% accuracy as 4 + 4(57.6 – 52.4)/(66.9 – 52.4) =
5.45 years. We estimate age of model with 60.4% accuracy as 4 + 4(60.4 – 52.4)/(66.9 – 52.4) = 6.2 years.
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